Honorary Research Lecture
ASEV Annual Meeting, 1999, Reno, Nevada

Sustainable Grape Productivity and the Growth-Yield Relationship: A Review

G. Stanley Howell

Research reports and experimental efforts during the last century are presented with the goal to encourage discussion of balancing grapevine fruit yield and vine growth and leaf area. Fruit and subsequent processed quality are equally relevant economic issues as we strive to create conditions for both sustainable grapevine productivity and vine capacity for tolerating abiotic and biotic stress episodes. It is proposed that methods to achieve vine balance will vary with regard to macroclimate and cultivar, but will be most critical for those macroclimates commonly called cool-climate regions. Regardless, vine balance is most readily understood when based on the principles of vine carbon balance as mediated through well-understood factors such as cm² leaf area/gram fresh weight of fruit at harvest and allometric practices as the Ravaz Index and the Growth-Yield Relationship.

Key words: Vine balance, minimal pruning, leaf area, crop ratio, Ravaz Index, carbon balance, photosynthesis, vine yield, vine size, fruit maturation

The challenge of commercial grapevine culture and production is the ability to consistently produce a quantity of ripe grapes sufficient to cover all costs of production and return a profit to the producer. There are numerous models on which this may be achieved. Variables such as value of the cultivar, viticultural management, perceived quality of the crop, production costs, and production consistency all come together to determine whether the production is sustainable.

In recent years “sustainable” has been co-opted as a buzzword for various methods of culture, including “integrated,” “bio-dynamic,” and/or “organic.” For purposes here the term is used in its earlier, simpler form; sustainable production has both viticultural and economic dimensions. In this sense we say that sustainable production is a collective methodology that produces highest yields of ripe fruit per unit land area with no reduction in vine vegetative growth anddoes so over a period of years at costs which return a net profit.

Recently, Gladstones [10] used similar words to describe the term “balance.” Balance was achieved “when vegetative vigor and fruiting load are in equilibrium, and consistent with high fruit quality.” The terms “sustainable” and “balance” are concepts consonant with the material to follow.

A few premises are worth noting. Viticulture in cool-climate portions of viticultural production requires accommodation of those climatic factors near the limits of commercial grape production. These environmental limits are the basis for the following premises: (1) for any genotype-environment interaction there is an optimum method of culture to achieve highest yields of ripe grapes of acceptable quality over years; (2) good viticultural practices must result from the application of sound principles of vine growth and development; (3) sustainable levels of highest fruit quality at maximum yield can occur only through the achievement of vine balance through the application of the leaf area/fruit weight ratio or the Growth-Yield Relationship.

Minimal Pruning and the Growth-Yield Relationship

The introduction of minimal pruning (MP) by Clingeleffer and associates in Australia [3-5,57,58] has proven to be a major breakthrough for winegrape culture in that region. It has been shown to be superior to traditional spur-pruned and cane-pruned approaches in both sustainable yield and fruit and wine quality.

On the surface, the data would seem to challenge the validity of premise 3. Clearly MP works well for winegrapes in Sunraysia, Australia, and the vine physiology on which the method is posited seems to suggest that once vines equilibrate, the approach should be broadly applicable even in cool-climate conditions.
regions. The following material is presented with two goals: (1) to share the basis of our concern about applicability of MP technology in cool, short-season viticultural macroclimates; and (2) to encourage a carbon-budget approach toward finding solutions to problems involving an array of abiotic and biotic stresses as well as vineyard practices.

Vine Balance

Although the discussion of vine balance has expanded in recent years, it is not new. Ravaz [47] is the earliest source of relevant information, and the Ravaz Index suggests that the ratio of fruit to wood is the key to achieving both fruit quality and consistent production. He also showed a general relationship between leaf production and fruit production. As he assessed the close relationships between leaf and wood production, he chose the latter for his Ravaz Index, as he sought a means for viticulturists to put the relationship into practice. He chose this allometric approach because he wanted growers to use it.

In the early 1920s, Partridge [37-42] put forward a very similar concept. He reasoned that a vine produced two forms of yield each growing season: reproductive yield and vegetative yield. Balance was achieved when yield of ripe fruit was maximized with no detrimental impact on vegetative growth. If the contribution by Partridge had stopped there, he would be of only passing note; it was merely a modification of Ravaz’s concepts. His genius was to take the next step. He proposed to use the weight of cane prunings produced in year 1 as an indicator of the upper limit of a vine’s capacity to produce and ripen a crop in year 2. While numerous factors can reduce yield in a given year, this upper limit was a major improvement in achieving vine balance. This was a major step. Balance as defined by the Ravaz Index was a postharvest evaluation. It could tell the viticulturist how nearly actual balance had been approached, but only after the fact. Partridge called his approach the Growth-Yield Relationship.

I compare the contribution of Partridge and the subsequent practical refinements by Shaulis [22,48-52,59] to that of Darwin with relation to organic evolution. Gould [11] argues convincingly that the idea of evolution had been around for centuries prior to Darwin’s time. The genius of Darwin was his definition of a means by which it could be achieved—natural selection. Partridge and Shaulis, analogous to Darwin, produced a practical methodology by which the process could be both explained and put to practical use [37-39,42,48,52] to achieve balance and sustained production.

The application of vine balance concepts is complicated by several considerations: (1) grapevines are perennial plants and for that reason the positive or negative impact of a season’s vineyard management can be measured for one or more years afterward [20]; (2) in cool-climate viticultural regions there are strong annual fluctuations in weather conditions during the growing season [16]; and (3) under conditions of high bud number relative to vine capacity, the weight of mature canes relative to leaf area declines [32,33]; there is more leaf area per unit weight of canes. In any event, a prescription approach to vineyard management under such conditions is unacceptable as it limits both yield and quality in good vintages and will yield unripe fruit and reduced vine growth, measured as vine size (kg cane prunings/meter of row), or as actual area of exposed foliage, in poor vintages.

Leaf Area and Crop Balance

As noted by Ravaz, Partridge, Shaulis, and subsequent researchers [14,17,18,43,44], balance may also be considered as the amount of leaf area required to ripen a unit of crop weight. This is commonly expressed as cm² leaf area/gm fresh weight of fruit. The literature reports a range of 7 to 14 cm²/gm to achieve ripening. The proposal of a 2 X range of difference immediately attracts our attention. What makes it possible for a cultivar to achieve vine balance at 7 cm² in one cultural situation and require 14 cm² in another will be addressed in this discussion.

Crop Balance and Growing Season Length

Grapevines cultured in a region allowing a significant period of time postharvest with vines retaining functional, exposed leaf area will require less leaf area to ripen the crop. This postharvest period allows vine crop levels that likely not only use the current season’s photosynthetically produced carbohydrates but also mobilize carbohydrates stored in vegetative tissues [23,25,53]. A long foliated period after harvest could allow the reaccumulation of carbohydrates in storage tissues that will be necessary for the final stages of bud and inflorescence differentiation and support the spring growth flush in year 2 [50]. Thus, a long foliated period postharvest could potentially ripen a larger crop per unit leaf area.

Crop Balance and Light Intensity

Another likely factor related to crop balance is light intensity over the growing season [25]. Grapevine culture in California’s Central Valley or the Sunnyside district of Australia is greatly facilitated by high light intensity. Few days in these viticultural regions do not exceed the 800 to 1000 μE m⁻² s⁻¹, which is saturation for leaf photosynthesis [25,53,54], many days the level is nearer 2000 μE m⁻² s⁻¹. By contrast, cool-climate regions may be limited by growing season length, light intensity, or both. Smart [53] has reported that about 8 to 10% of photosynthetically active radiation (PAR) striking a canopy passes through the leaf, and that is a key component of his canopy management philosophy regarding leaf layer number. When the light intensity is at or above 2,000 μE m⁻² s⁻¹, the second leaf layer can receive 200+ μE m⁻² s⁻¹, well above the leaf compensation point. When ambient PAR is at 800 μE m⁻² s⁻¹, the resulting 80 μE m⁻² s⁻¹ PAR is at or below the compensation point (Howell and Trought, 1997, unpublished data). Further evidence suggests that such shade leaves lack the capacity to achieve the rates of photosynthesis of “sun leaves,” even when placed in full sun [21]. Consistently high light intensities improve photosynthesis of interior, shaded leaves and can reduce the leaf area necessary to ripen the crop.

Limitations in Cool-Climate Viticulture

The culture of grapevines near the cool-climate limits of commercial production often lacks one or both of the above-
the fruit sink on the cordon D treatment to mobilize carbohydrate from the cordon F treatment and move it up to 6 m and result in increased sugar in fruit. Even more impressive was the response of the fruit on the control D treatment vines. In the absence of leaves, the fruit mobilized stored carbohydrates and resulted in a 2.0 °Brix increase in the fruit. The power of the postveraison fruiting sink is great.

Training System and Vine Carbohydrate Dynamics

In the 30 years of the 1970s through the 1990s, a revolution in cultivars used for wine has occurred in Michigan and other portions of the Great Lakes region. The cultivars used for 95% of Michigan wine in 1970 accounted for less than 5% of the wine in 1995 (Mich. Liquor Control, personal communication). This cultivar change resulted in questions concerning whether approaches deemed desirable or acceptable for a Viis labruscana Bailey cultivar with a procumbent, growth habit would be appropriate for cultivars possessing a more upright growth habit. To resolve this question, experiments were undertaken involving a range of training systems. These have been recently summarized [15].

Our effort sought to understand principles, not just evaluate practices. New approaches to vine training occur nearly every year. Once principles are uncovered, the application of those principles should be possible after an initial assessment of a cultivar’s growth habit. We should not be required to reinvent the wheel every time a new training system is suggested. We employed four training systems that differed in height of the fruiting zone and were head or cordon trained systems: low head, high head, low cordon, and high cordon.

We have conducted this kind of experiment on nine cultivars and conducted each for a minimum of five years [17,18]. The amount of perennial wood varied significantly with each training system tested. All vines were double trunked so the length of perennial wood for each system was: 1.8 m for low head; 3.6 m for high head; 4.3 m for low cordon; and 6.1 m for high cordon. With the exception of the cultivar Aurore, we have invariably seen the relationship: high cordon > low cordon > high head > low head. This has been true whether we were considering vine size, vine yield, fruit composition values, or bud and cane cold hardiness. The impact of perennial vine structure on vine performance has also been reported by May [27] in Australia.

Similarly, work in Switzerland [23,24] employing a trunk modification yielding a 12 to 15% increase in perennial wood resulted in significant increases in fruit °Brix as compared to the traditional trunk conformation.

Collectively, these data suggest that choice of training system has considerable impact on the level of sustainable production of ripe grapes. Training systems with more
perennial wood show favorable response of yield, vine size, fruit composition, and cold hardiness [15,17,18].

Old vines make better wine? These experiences also led us to a conjecture: as vine training systems with greater quantity of perennial wood resulted in fruit with superior fruit composition values, could the oft-expressed sentiment that "old vines make better wine" be a result of greater volume of perennial wood and concomitant increased carbohydrate storage area? If so, the response would be most often expressed in poor vintages. That, of course, would be the condition when it could be most readily detected. This speculation can be easily subjected to critical experimental evaluation, and I expect it will be in the coming decade.

Grapevine Photosynthesis and Carbohydrate Partitioning

Experiments in grapevine photosynthesis and carbohydrate partitioning have been conducted in cooperation with an array of associates in Switzerland [1,2,23,24], New Zealand [2,43,44], and Michigan [6-9,13,31,33,34]. The methods employed involved assessment of the single leaf, whole potted vines, and whole mature vines in the vineyard. Potted vine studies have been of two types: vines produced by the Mullins Technique [36] and two-year-old bearing vines in 20-liter pots [6-9,31-34].

An array of cultivars has also been employed, including Chambourcin, Chardonay, Concord, Niagara, Pinot noir, Seyval, and Vignoles. The following principles are consistent with data derived from these very different cultivars.

Predicting Vine Carbon Status

Single-leaf versus whole-vine assessment of photosynthesis. Since CH_{2}O is the vine's metabolic currency for growth, differentiation, fruit ripening, and a host of other processes, photosynthesis becomes a candidate for assessing a circumstance in vine culture that may influence sustainability. One goal in a vine photosynthesis study is to produce a measurement that can predict whole-vine performance. One approach to achieve that goal is to assess the photosynthetic CO_{2} fixation of a precise area on a single leaf and then multiply that by the leaf area on the vine. An alternative approach involves the assessment of CO_{2} fixation by the entire canopy [31]. Using vine dry weight and whole-vine photosynthesis as the basis for assessment, the single-leaf assessment is not predictive for either factor; the whole-vine assessment is predictive of vine dry weight status [7-9,33,34]. Based on these data, the perceived influence of vine photosynthesis on sustainable yield of ripe grapes will be influenced by the methods used to measure it and the manner in which such data are interpreted.

Single-leaf measurements do have considerable utility. The key to their effective use is to define precisely the question asked and to be very critical in any extrapolation of leaf response to canopy response [34,43].

Crop load and carbohydrate partitioning. One of the findings often reported based on single-leaf assessments has been the positive influence of crop load on vine photosynthesis [5,57]. That seems to be intuitively obvious; more fruit should reduce any fruit-based feedback inhibition of photosynthesis to a minimum. Thus, more CO_{2} should be fixed per vine and that should be shown as increased dry weight per vine.

Table 4 suggests that the assumption is untrue. An evaluation of partitioning data at fruit set, veraison, and harvest shows shifts in the relative dry weight of the various vine organs but shows no difference in total vine dry weight on any measurement date [7-9]. The amount of crop per vine influences where the carbohydrates produced accumulate. At harvest, fruit accounted for over 40% of the total vine dry weight for the most heavily cropped vine. This high percentage of dry weight accumulates at the expense of vegetative tissues, particularly the roots. This dry weight data is supported by a subjective assessment of root quality (Table 5). Between 60 to 80% of the grapevine

Table 4. Influence of vine crop load on the quantity and percentages of dry matter partitioned to different vine structures at fruit set (A), veraison (B), and harvest (C). After Edson et al. [9].

<table>
<thead>
<tr>
<th>Clusters/vine</th>
<th>Percent of total</th>
<th>Total vine dry wt. (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fruit</td>
<td>Leaf</td>
</tr>
<tr>
<td>A. Fruit set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2.2</td>
<td>8.6</td>
</tr>
<tr>
<td>4</td>
<td>2.0</td>
<td>10.0</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>11.4</td>
</tr>
<tr>
<td>1</td>
<td>0.7</td>
<td>11.9</td>
</tr>
<tr>
<td>0</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Linear regression</td>
<td>***</td>
<td>ns</td>
</tr>
<tr>
<td>B. Veraison</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>32.3</td>
<td>16.6</td>
</tr>
<tr>
<td>4</td>
<td>28.9</td>
<td>17.1</td>
</tr>
<tr>
<td>2</td>
<td>25.0</td>
<td>18.3</td>
</tr>
<tr>
<td>1</td>
<td>15.1</td>
<td>21.0</td>
</tr>
<tr>
<td>0</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Linear regression</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>C. Harvest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>42.9</td>
<td>11.0</td>
</tr>
<tr>
<td>4</td>
<td>41.0</td>
<td>12.6</td>
</tr>
<tr>
<td>2</td>
<td>28.1</td>
<td>14.6</td>
</tr>
<tr>
<td>1</td>
<td>21.9</td>
<td>15.2</td>
</tr>
<tr>
<td>0</td>
<td>0.0</td>
<td>19.1</td>
</tr>
<tr>
<td>Linear regression</td>
<td>***</td>
<td>***</td>
</tr>
</tbody>
</table>

*na: not available.

*, **, *** and ns indicate statistical significance at 0.05, 0.01, 0.001, and not significant, respectively.
Table 5. Influence of vine crop load on roots at different phases of the growing season. After Edson et al. [9].

<table>
<thead>
<tr>
<th>Clusters/vine</th>
<th>Dry wt. (g)</th>
<th>Root class</th>
<th>Dry wt. (g)</th>
<th>Root class</th>
<th>Dry wt. (g)</th>
<th>Root class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fruit set</td>
<td>Veraison</td>
<td>Harvest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>33.1</td>
<td>2.8</td>
<td>59.6</td>
<td>2.3</td>
<td>74.0</td>
<td>1.8</td>
</tr>
<tr>
<td>4</td>
<td>28.6</td>
<td>3.0</td>
<td>61.3</td>
<td>2.7</td>
<td>81.4</td>
<td>1.9</td>
</tr>
<tr>
<td>2</td>
<td>25.1</td>
<td>3.0</td>
<td>59.6</td>
<td>2.6</td>
<td>97.8</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>30.9</td>
<td>2.8</td>
<td>73.2</td>
<td>4.5</td>
<td>100.3</td>
<td>2.7</td>
</tr>
<tr>
<td>0</td>
<td>na(^a)</td>
<td>na</td>
<td>na</td>
<td>*</td>
<td>na</td>
<td>*</td>
</tr>
<tr>
<td>Linear regression</td>
<td>ns(^a)</td>
<td>ns</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

\(^a\) Rating system: 1=poor, few active roots; 5=good, many vigorous roots.
\(^na\) not available.
* and ns indicate significance at 0.05, 0.001, and not significant, respectively.

vine roots produced each growing season die, an ongoing process of turnover of the fibrous white roots [28]. The data in Table 5 support the dry weight data and suggest that the observed decline in root quality results from reduced replacement of roots as older roots die [28,60,62].

This observation differs from the Australian experiences [3] and that of Robert Wample in Washington State (personal communication, 2001); no reduction in roots was measured. As noted above in the discussion on light intensity and growing season length and in Table 1, near-ideal conditions for culture eliminate factors that commonly limit carbon assimilation and accumulation in cooler climates.

Grapevine Crop Level and Fruit Maturation on Vines

Potted vines. The data collected to date suggest that if the growing season with adequate growing conditions is long enough, the vine will ripen the crop (Table 6) [9]. What is not shown is a critical component of grape quality—varietal character. Anecdotal experience and micro-vines produced from grapes in the experiment reported in Table 6 suggest that fruit composition is generally associated with varietal character (data not shown) but is not predictive of the intensity of that varietal character. The grapes that achieved mature Brix earliest had greatest varietal character for this cultivar. Importantly, this will vary with variety and the compounds that collectively produce varietal character.

Table 6. Influence of vine crop load on vine yield and fruit composition. After Edson et al. [9].

<table>
<thead>
<tr>
<th>Clusters/vine</th>
<th>Yield (g)</th>
<th>Two weeks preharvest</th>
<th>Harvest</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Brix</td>
<td>pH</td>
<td>TA</td>
</tr>
<tr>
<td>6</td>
<td>507</td>
<td>19.0</td>
<td>3.00</td>
</tr>
<tr>
<td>4</td>
<td>521</td>
<td>19.4</td>
<td>3.08</td>
</tr>
<tr>
<td>2</td>
<td>384</td>
<td>19.6</td>
<td>3.08</td>
</tr>
<tr>
<td>1</td>
<td>288</td>
<td>19.6</td>
<td>3.10</td>
</tr>
<tr>
<td>Linear regression</td>
<td>***</td>
<td>ns</td>
<td>ns</td>
</tr>
</tbody>
</table>

\(^a\), \(^**\), and ns indicate significance at 0.05, 0.001, and not significant, respectively.

Grapevine leaf area and veraison. Under conditions of serious leaf area reductions occurring prior to veraison, a source:sink imbalance can result. The created source inadequacy can have an impact similar to that of excess crop with a resulting delay in the onset of veraison. As with fruit maturation curves [43], all berries ultimately pass through veraison, but the treatment with most restricted leaf area to fruit weight ratio was delayed by over 30 days.

Mature vines in the vineyard

While potted vines are convenient for partitioning studies, we would never be comfortable putting a conceptual viticultural principle into practice without first evaluating the response of mature, bearing vines in a vineyard.

The data in Table 7 result from an experiment on Concord vines conducted with a factorial statistical design. There were three vine size categories selected with the number of nodes retained at pruning ranging from 20 to 160 per vine. The experiment was conducted from 1991 to 2000 [35]. Similar data have been produced in other research efforts [29,30]. The key point of these vineyard data is their agreement with those gained by experimentation on potted vines. The above-ground response is very similar. We therefore make the inductive inference that the factor not measured, that is, root dry weight, also responded in a similar manner to the potted vines. This inference should be subjected to critical direct assessment in the vineyard.

Early Development of Leaf Array and Crop Maturation

Another idea that seems intuitively obvious is the positive impact of early leaf area on total vine carbon assimilation over the growing season. Early canopy fill, it would seem, should trap sunlight that would otherwise strike the vineyard floor [57,58].

Like the previously mentioned case of increased Pn and crop load, the data do not support the hypothesis. Data in Tables 7 and 8 show a different response. Concord vines were at equilibrium with a range of either 15 to 91 buds (Table 7) or 17 and 66 buds (Table 8) retained per meter of row. Differences in leaf area at bloom and veraison coupled with the leaf area:fruit weight ratio favor the larger bud number in every case, but fruit maturation (based on fruit composition values) is delayed for the larger bud number treatments. Early leaf area development was not an advantage once vines were at equilibrium with the imposed treatments.

Photosynthesis and Leaf Age

Data reported by Kriedemann [25] and Poni and Intrieri [46] raises one concern
The 1990s produced the greatest variation among growing seasons in Michigan since temperature recording began. The years 1991, 1998, and 1999 were among the best on record for growing degree days. The 1992 vintage was the worst.

Such variation creates a dilemma for the producer. Does a producer crop at the level to achieve balance in 1992, and lose the amount of ripe crop possible in 1991, 1998, and 1999? Alternatively, does the producer crop for vintages like 1991, 1998, and 1999 and risk an unsaleable crop in 1992? This is a reality in cool-climate viticulture, with major economic implications for the viticulturist. In fact, we do not know how much crop level should be adjusted downward in response to one or more environmental and/or biotic stresses. This area deserves much more attention by viticulturists for two reasons: the scenarios on global warming suggest a more variable climate situation, and we will have fewer pest control options in the future. We must anticipate conditions that will result in variable ability to ripen a crop. In any event, it is clear that a prescription approach cannot be satisfactory.

Crop adjustment and vine balance. Crop adjustment provides one solution. This approach would allow the viticulturist to crop at the level that would achieve balance in the historical "best" vintage and adjust the crop downward prior to veraison based on the status of GDD accumulation halfway between bloom and veraison. The vine would easily adjust [35,38,55,56] and even compensate [1].

Pest Control, Sustainable Grape Production, and the Growth-Yield Relationship

The future of commercial viticulture is perceived through a cloudy crystal ball under the best of circumstances, but one fact seems very clear: future grape production will have fewer chemical tools to combat pest problems. A likely result will be periodic episodes of stress when vines are subjected to insect or disease attack on vine foliage. Greatly limiting our ability to predict the impact of these episodes is the lack of information about economic thresholds. How much leaf damage occurs before there is an economic impact? We do not know the impact of powdery or downy mildews, leafhopper burn, or Japanese beetle reduction of leaf area on leaf CO₂ assimilation or net photosynthesis. Nor do we know whether the impact of the biotic stress changes with relation to shoot and fruit growth and maturation phenology of the vine. Based on work with abiotic stresses reported above, we expect that timing will be important. Unfortunately such data are very scarce [2].

Applying the principles of the Growth-Yield Relationship to abiotic stresses provides direction for future efforts on pest-induced stresses. In a poor vintage, crop adjustment can produce the balance appropriate for that season's climatic conditions. A similar approach for pest stress should be possible once the physiological and economic impact of the pest stress has been determined.

Within vineyard variation and sustainable production. In addition to seasonal variation is the reality that soil variation within the vineyard can produce a considerable range of vine vigor and resulting vine size and leaf area. Again, a prescription approach cannot work: each vine must be considered individually or small vines will be overcropped and large vines undercropped. This can result in the smaller vines becoming weaker and producing unripe fruit and the larger vines producing inadequate yields of fruit ripened in the shade of an excessively vigorous vine canopy [29,30]. At most vineyards, crop control is done at pruning, based on numbers of nodes retained. Because this pruning is being done by hired pruners, the ability to achieve such individual attention is very small. However, the future does hold promise.

The Future

Several features of the viticultural future are visible now:

1. Site mapping via global positioning satellites (GPS) to determine where "problem" areas exist.
2. On-board harvester yield assessments are a reality. In the future, these data coupled with GPS data will monitor low production areas within a vineyard and provide a basis for attention and cultural modification.
3. Vine size or estimates of exposed canopy at veraison will be possible using existing tractor-mounted computer-based visual technology coupled with GPS positioning. The potential crop based on leaf area or Partridge's Growth-Yield balance concepts will be determined by the computer for each individual vine.
4. Crop load estimates will be made using methods noted above in item 3 at the time of the prebloom spray when flower clusters are easily visible.
5. Crop adjustment in mid-July (for northern hemisphere) or about halfway between bloom and veraison will be accomplished mechanically so that the input of each individual vine from items 3 and 4 above plus GDD status are integrated and individual vine balance achieved.

These five features are now possible. The databases and the research required to produce these databases are lacking. In addition, it will become increasingly important for the viticulturist to employ the most advanced methods of monitoring vineyard growth and pest status and to adopt the principles of vine balance. As yields approach the upper limit for any macro- or mesoclimate, the buffering capacity of photosynthesis compensation will be reduced, and further stresses that negatively influence vine carbon balance, regardless of origin, can produce disastrous results. That is the challenge for sustainable viticulture in the twenty-first century, and meeting that challenge will have its roots in the leaf area:fruit weight ratio, the Razz Index, and the Growth-Yield Relationship, as understood by Newton Parrtridge and Nelson Shaulis.

Conclusions

The concept of vine balance is nearly 100 years old. Razz introduced the concept and Partridge and Shaulis pursued methods to use it as a means to predict vine performance via the Growth-Yield Relationship. This allometric method substituted vine growth or vine size (weight of cane prunings per vine) for leaf area per vine and the leaf area relationship to fresh fruit weight (7 to 14 cm² per gram). That relationship is tied to vine balance and long-term sustainable viticulture.
Training systems employing maximum amounts of perennial wood that also facilitate sunlight penetration into the fruiting and renewal zone are to be preferred. Spur systems on cordon may be unacceptable on some cultivars due to low fruitfulness of basal buds [15].

Photosynthesis in the period preveraison is not source-limited under typical vineyard conditions, and leaves seldom exceed 50% of their measured photosynthesis capacity. This has been demonstrated on Mullins vines, two-year-old potted vines, and mature bearing vines using several cultivars and different Vitis species.

Single-leaf photosynthesis measurements are not correlated with either whole vine photosynthesis or total vine dry weight increases. Whole vine photosynthesis is closely related to vine dry weight increases.

Minimal pruning and/or machine hedging in some form, coupled with a capacity for timely crop adjustment, offers a good potential for future likelihood of achieving maximum sustainable yield of ripe grapes across a range of cultivars. The key to this success of this effort will be vine-by-vine control of crop adjustment to achieve vine balance under conditions of variable crop load, previous year's vine size, and current season's growth and maturity status preveraison.

Leaves on vines with either inadequate leaf area or excess crop (low source:sink ratio) retain chlorophyll, delay senescence, maintain high photosynthetic rates, and delay the aging response characterized by leaves on similar vines possessing fully expressed canopies.

Inadequate leaf area delays veraison and lengthens the time from veraison to ripening.

Vine balance as understood by Ravaz, Partridge, Shaulis, and others remains a key to the achieving of maximum consistent production over long years of production. Modifications in our approaches to vine culture and management should begin with an assessment of that modification's impact on vine balance as understood based on the Ravaz Index, the Growth-Yield Relationship, and cm² leaf area/gram fresh weight of fruit at harvest.

Literature Cited

47. Ravaz, M.L. L'eufolage de la vigne. Annales d'Ecole Nationale d'agriculture de Montpellier. 11:216-244 (1911).

