Precision Ag Technology
…it’s all about the data

Growing Michigan Agriculture Conference
January 23nd, 2013

Joe D. Luck
Assistant Professor
Department of Biological Systems Engineering
Presentation Outline

- GPS and Network Technologies
 - Cellular
 - GPS + GLONASS
 - Satellite RTK
- Data Collection and Analysis
- Data Filtering and Processing
- Automated Data Processing
- Telematics/Analytics
GPS and Network Technologies

- Continuously Operating Reference Stations
- CORS Network RTK Correction
- Network subscription?
- Modem required
- Cellular data plan needed

University of Nebraska–Lincoln
GPS and Network Technologies

- MDOT CORS Network
GPS and Network Technologies

- NDOR CORS Network
GPS and Network Technologies

- Raven Slingshot Network
 - Cellular RTK Delivery
 - Multiple Networks:
 - MDOT
 - MyWayRTK
 - Data Transfer:
 - Field to Office
 - Office to Field
 - Cloud Data Storage
 - Mobile Access
GPS + GLONASS Receivers

- The United States network: GPS
- The Russian network: GLONASS
- Each has about 30 satellites in orbit
- Other networks? (China, EU)

- The benefits may include:
 - Improvements in accuracy
 - Faster initialization times
GPS Network

- United States
GLONASS Network

- Russia
Satellite-based RTK correction

- Trimble CenterPoint RTX
- Horizontal accuracy of ± 1.5 inches
- Susceptible to typical GPS errors
- Standard initialization (up to 30 minutes)
 - Satellite or cellular network delivery
- One-minute initialization
 - Satellite network delivery
Satellite-based RTK correction

- RTX One-minute initialization (in blue)
Data Collection and Analysis

- Farm Management Software (FMS)
- Many FMS packages are available:
 - Apex
 - SMS
 - Farmworks
 - SST
 - SGIS
 - MapShots
Data Collection and Analysis

- Today FMS is more user friendly
- Handle data from multiple manufacturers
- Store and analyze field data
- FMS can perform many functions:
 - Comparison analysis (soil type, topography)
 - Prescription (Rx) map development
 - Batch data processing
 - Yield data normalization
Data Collection and Analysis

- Comparing Yield to Soil Type
- Soybean harvest data:
Data Collection and Analysis

- Comparing Yield to Soil Type
- Soil survey data:
Data Collection and Analysis

- Comparing Analysis Results:

![Graph comparing analysis results for different soil types](image-url)
Yield Data Normalization

- Corn (right)
- Soybean (below)
Yield Data Normalization

- Multi-year analysis using different crops:
Yield Data Normalization

- Provides a yield range in % (not bu/ac)
- Allows for comparison with different crops
- Still need to consider the “year” (wet or dry)
- Baseline yield data (3-5 years) is a good starting point
- May be useful for:
 - Identifying management zones
 - Locating test plots
 - Evaluating management changes
- Next step…yield “stability” maps
Automated Data Processing

- Automated processing is our goal (saves time)
 - Data analysis or Rx map development
 - Accurate data is critical
 - Good data in = Good data out
 - Bad data in = ______________

- Processing yield data is a good idea:
 - Improves total harvested grain estimates? No
 - Improves accuracy of information gained? Yes

- Yield Editor software, USDA (free download)
Data Filtering and Processing

- Raw yield data contains errors:
Data Filtering and Processing

- Yield Editor Software (USDA):
Data Filtering and Processing

- Processing (Yield Editor) can remove errors:
Data Filtering and Processing

- Interpolating with raw points to create a grid:
Data Filtering and Processing

- Interpolating with the filtered data:
Raw versus Cleaned Grid Data
Contour (zone) maps?
Telematics and Analytics

- **Telemetry:**
 - Data transmission from source to central
 - Storage, processing and analysis at central
 - Transmission back to source, remote control
 - Mobile-central or source-to-source transmission

- **Analytics:**
 - Finding or detecting patterns in data
 - Computer programming and statistical analysis
 - Data visualization and communication
 - Provides information for decision-making
Telematics and Analytics

- Telemetry has numerous Ag applications:
 - Weather data
 - Soil moisture status
 - Grain bin monitoring
 - Machine performance
 - Irrigation systems
Telematics and Analytics

- Analytics follow the data:
 - Industrial/Marketing
 - Healthcare
 - Social Media
- Ag systems are starting to generate large datasets
 - May range from 0.25 to 2.5 MB/operation/acre
 - What data do we really want/need?
- BIGDATA
 - New U.S. R&D Initiative
 - How to manage/utilize HUGE datasets

University of Nebraska–Lincoln
Thank You!

- Questions/Comments?
- Feel free to contact me:

 Joe D. Luck
 402-472-1488
 jluck2@unl.edu

or visit: www.precisionagriculture.unl.edu