High-Yielding Irrigated Soybean Production
North Central USA Soybean Benchmarking Project

How Soybean Producers Benefit From Completing & Submitting the Soybean Benchmark Yield-Management Survey Forms

James E. Specht
Emeritus Professor
Department of Agronomy & Horticulture
University of Nebraska – Lincoln

Presentation at the 6 February 2017 Irrigated Soybean and Corn Production Conference Shipshewana, IN

NOTE: The slides presented herein are Nebraska Soybean Benchmark Project results that my University of Nebraska Colleague Dr. Patricio Grassini and I collaborated on before my retirement in July 2014. Dr. Grassini is now a co-PI of a much larger Soybean Benchmarking Project that spans 10 states in the North Central USA. Non-Nebraska producers should contact their State’s Benchmark project leader.
A regional project (funded by NCSRP & NSB), collecting data from 3,500 producer soybean fields in the US North-Central region, indicates that only 1% of fields achieve 80+ bu/ac.

Source of Slide: Dr. Patricio Grassini, UNL
The Power of Producer-Reported Data

We argue that collecting producer data is equivalent to running thousands of field studies to capture soil x climate x management interactions.

Enormous potential for use of PRODUCER DATA to:

- Identify causes of yield gap and inefficiencies in the use of inputs
- Improve crop management decisions for a given soil type, climate, and cropping system

Cost-effective (low cost, minimal time for growers) approach to:

- Justify current management production practices
- Identify emerging problems and innovations
- Inform investments on agricultural research ("biggest bang for the buck")
- Monitor impact of new technologies and policies
- Better orient and target costly field trial evaluations of agronomic practices

Source of Slide: Dr. Patricio Grassini, UNL
The first soybean benchmarking project was conducted in Nebraska. Dr. Grassini spoke to NE Soy Producers this spring about the results.

What does it take to routinely produce 80+ bu/ac soybean yields?

Patricio Grassini, Jenny Rees, Jessica A. Torrion, Haishun Yang, Kenneth G. Cassman, Daryl Andersen & James E. Specht

Department of Agronomy & Horticulture
University of Nebraska-Lincoln

2016 Crop Production Clinic Proceedings
p. 11-12. See: http://agronomy.unl.edu/cpc
Yield potential, farm yield, and yield gaps

Determined by:
- Light
- Temperature
- Carbon dioxide
- Cultivar choice

Limited by:
- Water
- Poor Fertility
- Insects, weeds
- Diseases
- Poor management

Source of Slide: Dr. Patricio Grassini, UNL

Modified from van Ittersum and Rabbinge (1997)
Soybean in Nebraska: Benchmarking Project

Data from 500+ dryland and irrigated soybean fields in NE planted in 2010, 2011, and 2012

SOUTH-CENTRAL:
- Only irrigated
- MG: 2.7-3.0
- Silt loam soils
- No- or reduced-tilled fields

NORTHEAST:
- Irrigated & dryland
- MG: 2.4-3.0
- Sandy soils
- Disked fields

SOUTHEAST:
- Irrigated & dryland
- MG: 3.0-3.5
- Silt loam & silty clay loam soils
- No- or reduced-tilled fields

Soybean harvested area is indicated in green

Red dots indicate location of surveyed fields

Stars indicate location of a representative weather station in each region

Source of Slide: Dr. Patricio Grassini, UNL

Grassini et al. (2015)
Benchmark Survey Form: example of a 4-field form submitted by a NE producer

Source of Slide:
Dr. Patricio Grassini, UNL

<table>
<thead>
<tr>
<th>PRODUCER NAME:</th>
<th>Mailing Address:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please provide information for four SOYBEAN fields on your farm in 2014. If you have questions, contact Professor Patricio Grassini (Phone: 402-472-5554 / e-mail: pgrassini2@unl.edu). Note that all provided info will be kept confidential! An EXAMPLE is shown in red.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Please sketch-in the boundaries of your field location within the Section</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR GPS coordinates of field centroid: OR County & field location relative to Rd intersection:</td>
<td>41.678, -100.257 Saunders Co. SW of Rd 11 & N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dryland? OR Pivot, Gravity? Indicate field size (acres)</td>
<td>Pivot (120 ac)</td>
<td>Pivot (137 ac)</td>
<td>Cropland (230 ac)</td>
<td>Cropland (84 ac)</td>
</tr>
<tr>
<td>Does this field have drainage? (no, old clay tile, new systematic tile, surface drainage, other)</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Total Inches of Irrigation Applied to crop?</td>
<td>5 inches</td>
<td>3.5 in.</td>
<td>4.5 in.</td>
<td>3.5 in.</td>
</tr>
<tr>
<td>SOYBEAN YIELD (bushels/acre) for this FIELD:</td>
<td>70</td>
<td>90</td>
<td>70</td>
<td>95</td>
</tr>
<tr>
<td>Lowest [Highest Yield (bu/ac) of your soy fields that year</td>
<td>Low: 62</td>
<td>High: 80</td>
<td>Low: 61</td>
<td>High: 90</td>
</tr>
<tr>
<td>* Use Irrigated fields range if that crop was irrigated:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Use Dryland yields range if that crop was Dryland:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variety Name (Brand & Number):</td>
<td>Pioneer P9M11</td>
<td>Channel 3402 RR2</td>
<td>Channel 3402 RR2</td>
<td>Channel 3402 RR2</td>
</tr>
<tr>
<td>Seeding Rate (seeds/acre):</td>
<td>125,000</td>
<td>140,000</td>
<td>140,000</td>
<td>140,000</td>
</tr>
<tr>
<td>Row spacing (inches):</td>
<td>30</td>
<td>36</td>
<td>36</td>
<td>15</td>
</tr>
<tr>
<td>Seed Treated (Yes/No)? What Brand Name Product(s)?</td>
<td>Yes (Cruiser-Max)</td>
<td>Yes (Cherleson)</td>
<td>Yes (Cherleson)</td>
<td>Yes (Cherleson)</td>
</tr>
<tr>
<td>Prior Crop in this FIELD? Residue harvested or grazed?</td>
<td>Corn - Grazed</td>
<td>Corn - Grazed</td>
<td>Corn - No</td>
<td>Corn - No</td>
</tr>
<tr>
<td>Tillage after prior crop? No-Till (NT); Ridge (RT); Strip (ST); Disk (D); Chisel (C); Vertical (V) – Indicate timing (month-year)</td>
<td>ST (March-2014)</td>
<td>NT</td>
<td>D (April-2014)</td>
<td>NT</td>
</tr>
<tr>
<td>Any (non-starter) fertilizer after prior crop? Specify rate (pounds NUTRIENT/acre) and timing (month-year)</td>
<td>P2O5: 40 K2O: 30</td>
<td>P2O5: 40 K2O: 30</td>
<td>P2O5: 40 K2O: 30</td>
<td>P2O5: 40 K2O: 30</td>
</tr>
<tr>
<td>Other: S (11 lbs)</td>
<td>Other: None</td>
<td>Other: None</td>
<td>Other: None</td>
<td>Other: None</td>
</tr>
<tr>
<td>Time: March-2014</td>
<td>Time:</td>
<td>Time:</td>
<td>Time:</td>
<td>Time:</td>
</tr>
<tr>
<td>Any STARTER fertilizer (Yes/No)? If Yes, specify nutrients</td>
<td>Yes (N, P, Zn)</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Any Lime (L) or Manure (M)? If yes, specify timing (mm-yy)</td>
<td>M (Nov-2013)</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>PRE- or POST-emergence herbicide program or BOTH?</td>
<td>Both</td>
<td>Both</td>
<td>Both</td>
<td>Both</td>
</tr>
<tr>
<td>Any in-season foliar fungicide (F) / insecticide (I)?</td>
<td>F and I</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Soy Cyst Nematodes (Yes/No/I don’t know)</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Iron Deficiency Chlorosis (Yes/No)?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Any significant yield loss due to Insects, Diseases, Weeds, Frost, Hall, Flood, Lodging? Specify problem</td>
<td>Frost (Sept-2014)</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Source:
Nebraska Soybean Board

UNIVERSITY OF NEBRASKA LINCOLN

Nebraska’s NRDs Helping You Conserve Natural Resources for 55 Years 1917-2007
Water supply sets an upper limit on soybean yields

With optimal agronomic management and an in-season uniform distribution of about 25 inches of total water supply (dashed vertical pink line), an irrigated yield of 80+ bu/ac soybean yield (dashed horizontal red arrow) is possible. Field data points (blue-Irrig; yellow-Rain) located close to the solid red diagonal line have a water productivity denote producers who are getting 3.7 bu/ac per in of rain and/or irrigation!

Reference: Grassini et al. (2015)

Seasonal water supply includes available soil water (0-5 feet) at planting, and in-season rainfall and any applied irrigation. The red diagonal line indicates the likely maximum yield (boundary function) possible for any limited seasonal water supply value (i.e., left of dashed pink line). Rainfed producers on the A side of the pink line can move their field yields UP by improving their soybean management skills. Irrigated producers on the B side can also do that as well, but many use to much excess water to get 80+ bu/ac yields; Use irrigation scheduling to get those high yields with timely but less irrigation!
Planting date also sets an upper limit on soybean yields

There is a yield penalty of $\frac{1}{2}$ bu/ac in southern NE and $\frac{3}{4}$ bu/ac in northern NE per day of delay in planting (this is consistent with Bastidas et al. 2003-4 plant date experiments in Lincoln, NE)

Source of Slide: Dr. Patricio Grassini, UNL

Grassini et al. (2015, Field Crops Research)
Quantifying impact of agronomic practices

Over the past three decades, NE producers have shifted their soybean and maize planting time to earlier calendar dates: average soy planting date was May 30 in early 1980s and now May 15 as of 2010.

Given an average ½ bushel soy yield penalty per day of delay in planting, the shift towards earlier planting can account for a THIRD of the NE irrigated soybean yield increase over the last 30 years!

Source: Grassini et al., Crop Physiology (2015), 2nd Edition

Source of Slide: Dr. Patricio Grassini, UNL
Influence of tillage on irrigated yields

No significant yield advantage in no-tilled fields versus reduced- or disk-tilled fields. Indeed, a yield penalty occurred in no-tilled fields in years with colder springs.

Mean temperature during April 15 - May 15

Source of Slide: Dr. Patricio Grassini, UNL

Grassini et al. (2015, Field Crops Research)
The practice of applying fungicide to the canopy (ca. R3 stage) without visual evidence of the pathogen generates a yield response in many region-years. Grassini et al. (2015)
Higher yields in fields that received starter N or N+P fertilizer, or a large P application indicate that N (early in the season) and P may be limiting yields in a fraction of all fields.

Source of Slide: Dr. Patricio Grassini, UNL

Grassini et al. (2015)
Nebraska Soy Benchmark Conclusions

- When we acquire self-reported soybean producer yield and management data and get thousands of single field-year data reports, we find that we can dissect out of that pooled data the degree to soybean management practices – as used by producers – represent opportunities to increase yield, or reduce costs, or both ON YOUR FARM.

- **YOU CAN HELP US BY FILLING OUT AT LEAST ONE SURVEY FORM** (if possible one per year)! Our objective is to WORK FOR YOU and to use the data to help YOU get YOUR yields closer to potential field yield and to be more input-efficient!

- The Nebraska Benchmark study was quite successful and is now being expanded to North Central USA States. If you are not a Nebraska soybean producer, you will want to contact your State extension office to get your State-specific form.
Thanks!

Questions?

Note: More details about the Initial Nebraska Soybean Benchmark Project can be found in this recently Published Nebraska Extension Circular.

Go to: http://extensionpublications.unl.edu/assets/pdf/ec3000.pdf