Hop Fertigation and Nutrient Management

Dr. Ron Goldy, MSUE
Southwest Michigan Research and Extension Center

Fertigation:
Fertilizing through the irrigation system

www.hops-super-styrian.eu

www.wellinfarm.com

This does not constitute an endorsement. This is just a good site for information.
You will become a plumber!

http://www.trickl-eez.com/
This does not constitute an endorsement. This is just a good site for information.

Typical Drip System Layout

Pressure?

Influence of Soil Type on Irrigation Strategy
- Course Soil (sand): Rapid uptake, High permeability, Low retention
 Therefore, Prone to leaching
- Fine Soil (clay): Slow uptake, Low permeability, High retention
 Therefore, Prone to run-off
Factors Influencing Water Application

Climate: Rainfall Wind Temperature Light Level
Soil Type: Sand – Loamy Sand – Sandy Loam - Loam Clay Silt Organic Matter
CEC: Cation Exchange Capacity (Indirect measurement of water holding capacity)
Plant Growth Stage: Vegetative – Flowering - Fruiting

CEC is an Indirect Measurement of Soil Surface Area

CEC is a direct indication of:
- The soil’s ability to hold water
- Water infiltration rate
- The soil’s ability to retain nutrients
- The soil’s ability to change pH
- Herbicide activity in the soil

Sand Kaolinite Clay

www.azonano.com

Element (Symbol) Form taken up by the plant Soil Mobility
Nitrogen (N) (NH4)+ Ammonium form Somewhat imm.
(NO3)- Nitrate form Mobile
Phosphorous (P) (H2PO4)−, (HPO4)−2, PO−3 Immobile
Potassium (K) K+ Somewhat mob.
Calcium (Ca) Ca+ Somewhat mob.
Magnesium (Mg) Mg2+ Somewhat mob.
Sulfur (S) (SO4)−2 Mobile
Chlorine (Cl) Cl− Mobile
Iron (Fe) Fe2+ Mobile
Boron (B) (BO3)−3 Immobile
Manganese (Mn) Mn2+ Immobile
Zinc (Zn) Zn2+ Immobile
Molybdenum (Mo) (MoO4)−2 Mobile

Wherever Water Goes - So Do Nutrients

Nitrate (NO3)− retention in soils

Wherever water goes, nutrients go with it. If nitrate is not taken up by plants it is very likely to be lost from the soil.

Irrigation Strategy???

Depends Mainly on Soil Type

More critical for young plants

Sand: a little at a time, but often, fast application

Silt/Clay: slow application, longer time period, less frequently

When do I start and stop irrigating?

Resistance
Want to maintain soil moisture between 65% and 100% capacity

Below 65% you run the risk of economic loss

Above 100% you run the risk of leaching and runoff

Hops have a fairly extensive root system

Attaining a depth of 15-feet (most in the top 2 to 4-feet) and spreading

Don’t confuse rhizomes with roots

Need an understanding of the hop growth phases (See handout)

9 phases: 0 - 9

Fertilizer has its greatest affect during phases 1, 2 and 3 and should be complete by the time flowers become visible (stage 5)
Total N demand 100 - 150 lbs./A
Total P demand 20 – 100 lbs./A
Total K demand 80 - 150 lbs./A
Boron (B), Zinc (Zn), Sulfur (S)

Levels depend on age and expected yield.

Flowering in hops is dependent on day length and number of nodes and varies with cultivar.

The day length signal happens 7 – 14 days after June 21

Vegetative growth greatly slows and fertilizer will have minimal affect after July 1.

All P and K can be applied as a broadcast early

Split K applications on light soils

Highest N demand is from late April to late June
Early N applications can be applied as a broadcast – up to 25%

Prior to a rain event

150 lbs. N total

40 as a broadcast early

110 in 8 weeks = 13.75 lbs./week

1.7 lbs./day

Done by July 1 when flowers become evident

Determine how long it takes for water to move through your system

Charge the system

Inject the fertilizer

Flush the system and apply enough water to move it into the soil but not out of the root zone

QUESTIONS?