Soil Fertility for Wine Grapes

Carl Rosen

Department of Soil, Water, and Climate
University of Minnesota

Michigan Wine Grape Vinelyard Establishment Conference
February 9, 2018
General topics

- Soil testing and basic nutrient management for vineyards **before** planting
 - Taking a representative soil sample
 - Soil pH
 - Organic matter management
 - Macronutrients
 - Micronutrients

- Suggested amendments before planting
Essential Plant Nutrients

14 nutrients derived from the soil and/or fertilizer

<table>
<thead>
<tr>
<th>Macronutrients</th>
<th>Micronutrients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>Zn – Zinc</td>
</tr>
<tr>
<td>N – Nitrogen</td>
<td>B – Boron</td>
</tr>
<tr>
<td>P – Phosphorus</td>
<td>Fe – Iron</td>
</tr>
<tr>
<td>K – Potassium</td>
<td>Mn – Manganese</td>
</tr>
<tr>
<td>Secondary</td>
<td>Cu – Copper</td>
</tr>
<tr>
<td>S – Sulfur</td>
<td>Mo – Molybdenum</td>
</tr>
<tr>
<td>Mg – Magnesium</td>
<td>Ni – Nickel</td>
</tr>
<tr>
<td>Ca – Calcium</td>
<td>Cl – Chlorine</td>
</tr>
</tbody>
</table>
Determining Nutrient Needs

- Vine vigor
- Visual symptoms
 - Yield and quality already affected
- Soil testing
- Petiole analysis
Grapes are a Perennial Crop

- Making proper decisions based on soil testing prior to planting is essential.
- Once planted, only surface applications are possible.
- For some amendments surface applications are inefficient or ineffective.
Availability of Essential Mineral Nutrients

- Composition of the soil parent material
- Soil pH
- Soil Texture
 - Soil weathering / leaching
 - Internal drainage characteristics of the soil
- Soil organic matter content
- Competition between nutrients for uptake by the plant
- Previous fertilizer history
Soil Testing

- Soil test before planting
- Test every 4 to 5 years after planting...
 - or when a problem is suspected
- Supplements petiole testing in established vineyards
Soil Testing

- pH, P, and K
 - Soil tests very well calibrated for adjusting these properties

- Ca, Mg, S, Zn, B
 - Soil tests also useful for detecting deficiencies (or excesses) of these nutrients

- Organic Matter
 - Used to adjust N rates
Soil Sampling

- Collect representative samples
 - Soil tests are only as accurate as the samples you submit
 - Sampling is often the weakest link in a soil testing program
Sampling Guidelines

- Divide fields into uniform areas
 - Soil type, slope, crop history, previous lime, fertilizer, manure applications
 - < 20 acres for a single sample
 - < 2-3 acres on uneven land

- Collect 15-20 soil cores per sample
 - Random, zig-zag pattern across the field
Soil Sampling

- Sample to a depth of 0 to 8”
- A second sample, 8 to 16” can also be submitted
- Thoroughly mix sub-samples in a clean, plastic container
 - Submit about a pint of composite sample to testing lab
- If soil is wet
 - Air dry
 - Oven dry at <97° F
<table>
<thead>
<tr>
<th>Sample Identification</th>
<th>Crop Grown Before Last</th>
<th>Proposed Crops</th>
<th>CHECK TESTS REQUESTED</th>
<th>Nitrates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0-4"/6-24" sample</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0-24" sample</td>
</tr>
<tr>
<td>1</td>
<td>4+</td>
<td>57</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2</td>
<td>4+</td>
<td>57</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Recommendations available for these crops

See comment on back side

* THE REGULAR SERIES NOW INCLUDES PERCENT ORGANIC MATTER
Soil Test Report

FARMER DOE
ROUTE 1
ANYWHERE, MN 55000

Interpretation of Soil Test Results

<table>
<thead>
<tr>
<th>Soil Texture Code:</th>
<th>C (coarse):</th>
<th>sand, loamy sand, sandy loam</th>
<th>M (medium):</th>
<th>loam, silt loam</th>
<th>F (fine):</th>
<th>clay loam, silty clay loam, silty clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (high)</td>
<td>P</td>
<td>P</td>
<td>B</td>
<td>B</td>
<td>O</td>
<td>B</td>
</tr>
<tr>
<td>E (problem)</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>X (excessive)</td>
<td>P</td>
<td>P</td>
<td>K</td>
<td>P</td>
<td>K</td>
<td>C</td>
</tr>
<tr>
<td>A (alkaline)</td>
<td>P</td>
<td>P</td>
<td>K</td>
<td>P</td>
<td>K</td>
<td>C</td>
</tr>
<tr>
<td>P (problem)</td>
<td>P</td>
<td>P</td>
<td>Z</td>
<td>Z</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

Soil Test Results

<table>
<thead>
<tr>
<th>Sample/Field Number</th>
<th>Estimated Soil Texture</th>
<th>Organic Matter (%)</th>
<th>Soluble Salts (mmhos/cm)</th>
<th>pH</th>
<th>Buffer Index</th>
<th>Nitrate NO3-N ppm</th>
<th>Olsen Phosphorus ppm P</th>
<th>Bray 1 Phosphorus ppm P</th>
<th>Potassium ppm K</th>
<th>Sulfur SO4-S ppm</th>
<th>Zinc ppm</th>
<th>Iron ppm</th>
<th>Manganese ppm</th>
<th>Copper ppm</th>
<th>Boron ppm</th>
<th>Calcium ppm</th>
<th>Magnesium ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>3.0</td>
<td>5.5</td>
<td>6.5</td>
<td>30</td>
<td>85</td>
<td>0.5</td>
<td>1500</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recommendations

Crop Before Last: Grapes; Last Crop: Grapes

<table>
<thead>
<tr>
<th>Crop and Yield Goal</th>
<th>Method</th>
<th>Lime #ENPA</th>
<th>N lb/A</th>
<th>P2O5 lb/A</th>
<th>K2O lb/A</th>
<th>S lb/A</th>
<th>Zn lb/A</th>
<th>Fe lb/A</th>
<th>Mn lb/A</th>
<th>Cu lb/A</th>
<th>B lb/A</th>
<th>Ca lb/A</th>
<th>Mg lb/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grapes</td>
<td>Broadcast</td>
<td>2500</td>
<td>30</td>
<td>50</td>
<td>100</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Row/Drill</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

Comments: 3,18,24,50,53,64
Pre-Plant Soil Testing Sufficiency Ranges

<table>
<thead>
<tr>
<th>Test</th>
<th>OSU*</th>
<th>ISU</th>
<th>U of MN</th>
<th>NRAES-145**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil pH</td>
<td>5.5 - 6.5</td>
<td>6.0 - 6.5</td>
<td>6.0 to 7.0</td>
<td>**</td>
</tr>
<tr>
<td>Phosphorus (P)</td>
<td>20 - 50 ppm</td>
<td>> 30 ppm</td>
<td>> 25 ppm</td>
<td>20 - 50 ppm</td>
</tr>
<tr>
<td>Potassium (K)</td>
<td>125 - 150 ppm</td>
<td>> 150 ppm</td>
<td>> 160 ppm</td>
<td>75 - 100 ppm</td>
</tr>
<tr>
<td>Magnesium (Mg)</td>
<td>100 - 125 ppm</td>
<td>100 - 125 ppm</td>
<td>~ 100 ppm</td>
<td>100 - 250 ppm</td>
</tr>
<tr>
<td>Zinc (Zn)</td>
<td>4 - 5 ppm</td>
<td>3 - 4 ppm</td>
<td>> 1 ppm</td>
<td>2 ppm</td>
</tr>
<tr>
<td>Organic matter</td>
<td>2 - 3 %</td>
<td>2 - 3 (4) %</td>
<td>> 600 ppm</td>
<td>3 - 5 %</td>
</tr>
<tr>
<td>Calcium (Ca)</td>
<td>- -</td>
<td>- -</td>
<td>> 1 ppm</td>
<td>> 6 ppm</td>
</tr>
<tr>
<td>Boron (B)</td>
<td>.75 - 1.0 ppm</td>
<td>- -</td>
<td>> 1 ppm</td>
<td>0.2 - 2.0 ppm</td>
</tr>
<tr>
<td>Manganese (Mn)</td>
<td>- -</td>
<td>- -</td>
<td>> 6 ppm</td>
<td>20 ppm</td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>- -</td>
<td>- -</td>
<td>> 0.2 ppm</td>
<td>0.5 ppm</td>
</tr>
<tr>
<td>Iron (Fe)</td>
<td>- -</td>
<td>- -</td>
<td>--</td>
<td>20 ppm</td>
</tr>
<tr>
<td>Sulfur (S)</td>
<td>- -</td>
<td>> 7 ppm</td>
<td>> 7 ppm</td>
<td>--</td>
</tr>
</tbody>
</table>

 & Midwest Grape Production Guide (OSU Ext Bull. 919)
Soil pH

- Ideal pH range for grapes: 6.0 to 7.0
- Low pH easily modified before planting; high pH is often a problem – particularly with high carbonates
- Difficult to change after planting
Soil pH

- Microbial activity
- Nutrient availability
Modifying Soil pH

- Raising pH
 - Lime recommended if pH < 6.0
 - Rate based on buffer pH
 - Buffer pH depends on amount of clay and organic matter

- Lime also adds Ca and Mg
 - Dolomitic lime contains Mg & Ca; Calcitic lime – mostly Ca

- Incorporate lime 8 to 10 inches
 - Apply one year before planting
Modifying Soil pH

- Lowering pH is more of a challenge
 - Acidification of high pH soils is difficult and expensive
 - Elemental sulfur used to lower pH

- Most high pH problems are on soils derived from limestone

- High pH soil can cause severe iron deficiency
Iron Chlorosis

Photographed by Eli Bergmeier
Nitrogen Fertilizer Recommendations

- Of all the essential elements nitrogen is often the most limiting
- Soil tests for nitrogen are not that reliable – most recommendations adjusted to soil organic matter level
- Nitrogen is mobile in the soil, so preplant N applications are generally not needed for grapes
- Grapes are very efficient N users – too much N will result in excessive vine growth
Nitrogen Fertilizer Recommendations
(Non-Bearing Vines - 1st or 2nd year)

- Apply inorganic N sources after planting
 - Split applications on sandy soils to reduce leaching

- Account for N from manure, compost, legume cover crops

- General N recommendations:
 - 30 lb N/ac – high OM soils (>4.6%)
 - 45 lb N/ac – medium OM soils (3.1-4.5%)
 - 60 lb N/ac – low OM soils (<3.1%)
Nitrogen Nutrition Effects on Grapes

- **Deficient nitrogen**
 - Poor vine growth; pale yellow leaves
 - Low sugar content
 - Low yeast assimilable nitrogen in grapes

- **Excess nitrogen**
 - Excessive vine growth
 - Poor fruit color
Nitrogen Fertilizer Sources

- **Organic**
 - Manures, compost, legume cover crops
 - Apply manure/compost based on N content

- **Conventional**
 - Calcium nitrate:
 - Increases soil pH; Readily available; subject to leaching
 - Urea:
 - Volatilizes with surface applications – esp. high pH soils
 - Ammonium sulfate:
 - Decreases soil pH
 - Not prone to volatilization
Fertilizer Additions (Before Planting)

- Base P and K needs on a soil test
 - Also Mg, Zn, and B

- Very difficult to correct P and K deficiencies after vines are planted

- Broadcast and incorporate to a depth of 8 to 10 inches prior to planting
Phosphorus Management

- Very immobile in the soil
 - Pre-plant soil analysis & amend before planting

- Generally not a problem for established grapes
 - Vines often do well on low P soils, but deficiencies can occur particularly on acid soils (pH < ~5.3)
 - Soil mycorrhizal organisms aid in making P available

- On low P testing soils
 - Apply manure or compost in the fall as an N source
 - Apply triple superphosphate (0-46-0) or ammonium phosphate (11-52-0 or 18-46-0)
Potassium Management

- Generally immobile in the soil
 - Pre-plant soil analysis & amend before planting

- Grapes susceptible to K deficiency - esp. when fruiting
 - Low K results in low fruit sugars
 - high K can increase fruit pH

- Soil K applications:
 - Potassium chloride (0-0-62)
 - Potassium sulfate (0-0-50)
 - Potassium magnesium sulfate, (0-0-22 + 22% S, 11% Mg)
Potassium Stratification

<table>
<thead>
<tr>
<th>Soil Depth (inches)</th>
<th>K Level (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3</td>
<td>250</td>
</tr>
<tr>
<td>3-8</td>
<td>95</td>
</tr>
</tbody>
</table>
Magnesium Management

- Can be a problem on sandy soils, particularly when potassium has been over applied.

- If the soil pH is low (acid), apply dolomitic lime to raise the pH to 6.0 or 6.5.

- Use Epsom salts (magnesium sulfate) or potassium-magnesium (sul-po-mag) if the soil pH is in the optimal range.
Micronutrients

- Most micronutrients are present in sufficient amounts in soils to meet plant needs.
- Deficiencies may occur on high pH or very sandy soils.
- Iron, zinc, manganese, and boron deficiencies may occur in grapevines.
- Managing soil pH will help to reduce micronutrient problems.
Micronutrients

- Use of compost or manure as a nutrient source will also provide micronutrients
- Once vines are established foliar fertilizer sources can be used
- Identify micronutrient needs with petiole analysis after the second or third year of growth
Preparing soil before planting is especially important for a perennial crop like grapes.

Use soil tests to determine preplant amendments:
- pH, organic matter (OM), P, K, Mg, S, Zn, B
- Adjust nitrogen needs based on OM

Once vines are established and growing, supplement soil tests with petiole analysis.